k-tana-zero/k/atapi.c

151 lines
3.6 KiB
C

#include <k/atapi.h>
#include <string.h>
#include "atapi.h"
#include "io.h"
static struct atapi_drive drives[4] = { 0 };
/* wait functions */
static void busy_wait(uint16_t drive)
{
int res = 0;
while (res & BSY)
res = inb(ATA_REG_STATUS(drive));
}
static void wait_device_selection(uint16_t drive)
{
for (int i = 0; i < 4; ++i)
inb(drive);
}
static void wait_packet_request(uint16_t drive)
{
int res = 0;
while (res & BSY && !(res & DRQ))
res = inb(ATA_REG_STATUS(drive));
}
/* drive discover functions */
static void select_drive(uint16_t bus, uint8_t slave)
{
outb(ATA_REG_DRIVE(bus), slave);
}
static uint8_t is_atapi_drive(uint16_t bus, uint8_t slave)
{
static uint8_t atapi_sig[] = { ATAPI_SIG_SC, ATAPI_SIG_LBA_LO,
ATAPI_SIG_LBA_MI, ATAPI_SIG_LBA_HI };
uint8_t sig[4];
sig[0] = inb(ATA_REG_SECTOR_COUNT(bus));
sig[1] = inb(ATA_REG_LBA_LO(bus));
sig[2] = inb(ATA_REG_LBA_MI(bus));
sig[3] = inb(ATA_REG_LBA_HI(bus));
if (!memcmp(sig, atapi_sig, 4))
{
struct atapi_drive d = { bus, slave };
if (bus == PRIMARY_REG)
{
if (slave)
drives[1] = d;
else
drives[0] = d;
}
else
{
if (slave)
drives[3] = d;
else
drives[2] = d;
}
return 1;
}
return 0;
}
void discover_atapi_drive(void)
{
/* primary_reg */
outb(PRIMARY_DCR, SRST);
outb(PRIMARY_DCR, INTERRUPT_DISABLE);
// master_port
select_drive(PRIMARY_REG, ATA_PORT_MASTER);
wait_device_selection(PRIMARY_REG);
is_atapi_drive(PRIMARY_REG, ATA_PORT_MASTER);
// slave port
select_drive(PRIMARY_REG, ATA_PORT_SLAVE);
wait_device_selection(PRIMARY_REG);
is_atapi_drive(PRIMARY_REG, ATA_PORT_SLAVE);
/* secondary_reg */
outb(SECONDARY_DCR, SRST);
outb(SECONDARY_DCR, INTERRUPT_DISABLE);
// master_port
select_drive(SECONDARY_REG, ATA_PORT_MASTER);
wait_device_selection(SECONDARY_REG);
is_atapi_drive(SECONDARY_REG, ATA_PORT_MASTER);
// slave port
select_drive(SECONDARY_REG, ATA_PORT_SLAVE);
wait_device_selection(SECONDARY_REG);
is_atapi_drive(SECONDARY_REG, ATA_PORT_SLAVE);
}
/* IO functions */
int send_packet(struct SCSI_packet *pkt, uint16_t drive, uint16_t size)
{
// cpy SCSI_packet into uint16_t array
uint16_t packet[PACKET_SZ / 2];
memcpy(packet, pkt, PACKET_SZ * sizeof(uint8_t));
// wait for a packet to be requested
busy_wait(drive);
outb(ATA_REG_FEATURES(drive), 0);
outb(ATA_REG_SECTOR_COUNT(drive), 0);
outb(ATA_REG_LBA_MI(drive), size);
outb(ATA_REG_LBA_HI(drive), size >> 8);
outb(ATA_REG_COMMAND(drive), PACKET);
wait_packet_request(drive);
// write SCSI packet
for (int i = 0; i < PACKET_SZ / 2; ++i)
outw(ATA_REG_DATA(drive), packet[i]);
uint8_t read = 0;
while (read != PACKET_DATA_TRANSMIT)
read = inb(ATA_REG_SECTOR_COUNT(drive));
return 0;
}
static char block[CD_BLOCK_SZ];
void read_block(size_t lba, uint16_t drive)
{
struct SCSI_packet pkt = { 0 };
pkt.op_code = READ_12;
pkt.lba_lo = lba & 0xff;
pkt.lba_milo = (lba >> 0x8) & 0xff;
pkt.lba_mihi = (lba >> 0x10) & 0xff;
pkt.lba_hi = (lba >> 0x18) & 0xff;
pkt.transfer_length_lo = 1;
send_packet(&pkt, drive, PACKET_SZ);
// we can now read
uint16_t *buf = block;
for (int i = 0; i < CD_BLOCK_SZ / 2; ++i)
buf[i] = inw(ATA_REG_DATA(drive));
uint8_t read = 0;
while (read != PACKET_COMMAND_COMPLETE)
read = inb(ATA_REG_SECTOR_COUNT(drive));
}