add megalosaure and fix svartalfheim wus
Signed-off-by: Julien CLEMENT <julien.clement@epita.fr>
This commit is contained in:
parent
171c5040b2
commit
32286c8a62
786
jujure/content/writeups/fcsc_2024/megalosaure.md
Normal file
786
jujure/content/writeups/fcsc_2024/megalosaure.md
Normal file
@ -0,0 +1,786 @@
|
||||
---
|
||||
title: "Decompiling a nanomites based VM back to C | Megalosaure @ FCSC 2024"
|
||||
date: "2024-04-14 22:00:00"
|
||||
author: "Juju"
|
||||
tags: ["Reverse", "Writeup", "fcsc"]
|
||||
toc: true
|
||||
---
|
||||
|
||||
# Intro
|
||||
|
||||
Yes it's the third year in a row that I writeup the dinosaur reverse challenge.
|
||||
|
||||
But this time it is neither a math or puzzle challenge.
|
||||
|
||||
We are instead met with a program that takes 20 minutes to validate the input and forks tens of thousands of processes.
|
||||
|
||||
|
||||
{{< image src="/megalosaure/meme.jpg" style="border-radius: 8px;" >}}
|
||||
|
||||
## Challenge description
|
||||
|
||||
`reverse` | `490 pts` `5 solves` `:star::star::star:`
|
||||
|
||||
```
|
||||
Voici un binaire qui vérifie si ce qu'on lui passe est le flag. À vous de jouer !
|
||||
```
|
||||
|
||||
Author: `Cryptanalyse`
|
||||
|
||||
## Given files
|
||||
|
||||
[megalosaure](/megalosaure/megalosaure)
|
||||
|
||||
|
||||
# Writeup
|
||||
|
||||
## Overview
|
||||
|
||||
Nothing out of the ordinary at the first look.
|
||||
|
||||
```console
|
||||
$ file megalosaure
|
||||
megalosaure: ELF 64-bit LSB pie executable, x86-64, version 1
|
||||
(SYSV), dynamically linked, interpreter /lib64/ld-linux-x86-64.so.2,
|
||||
BuildID[sha1]=b8bd171568d3bd03eca826edb869205684411dab, for GNU/Linux 3.2.0,
|
||||
stripped
|
||||
```
|
||||
|
||||
Dynamic analysis however ... the binary first tells us to add a
|
||||
capability to the binary, `stracing` and `gdb` will thus require higher
|
||||
privileges to not drop said capability.
|
||||
|
||||
`stracing` will show us that the program starts by creating about 10 thousands `pipes`. Before prompting for the flag, inputting
|
||||
a correctly formatted `FCSC{...}` flag will then cause the program
|
||||
to fork endlessly for about 20 minutes before refusing the flag.
|
||||
|
||||
## Code analysis
|
||||
|
||||
|
||||
### Main function
|
||||
|
||||
Here is a decompiled main function.
|
||||
|
||||
We can see that the code creates the pipes in `setup_process_limit_and_IPC`,
|
||||
then creates a shared memory mapping..
|
||||
|
||||
It will then ask for the flag, check its format, and split the
|
||||
input into `0x12` `uint32_t`.
|
||||
|
||||
These `int` are then xored in the shared memory by groups of two
|
||||
and the same function is ran `0x2c` times for each group but more
|
||||
on this later.
|
||||
|
||||
Once this is done, the program saves some bytes in the shared
|
||||
memory else where, and shift the global shared memory pointer,
|
||||
before doing the same thing for the next 2 `int` in the input.
|
||||
|
||||
The final check simply is an equality test of all the saved values
|
||||
mentionned above against an hardcoded reference array.
|
||||
|
||||
```c
|
||||
uint32_t* shared_mem = nullptr;
|
||||
|
||||
int32_t main(int32_t argc, char** argv, char** envp)
|
||||
{
|
||||
setup_process_limit_and_IPC();
|
||||
shared_mem = mmap(nullptr, 0x100000, 3, 0x21, 0xffffffff, 0);
|
||||
if (shared_mem == -1)
|
||||
{
|
||||
perror("mmap");
|
||||
exit(1);
|
||||
}
|
||||
int32_t* shared_mem_original = shared_mem;
|
||||
puts("Enter the flag:");
|
||||
char input[0x46];
|
||||
memset(&input, 0, 0x46);
|
||||
if (read(0, &input, 0x46) <= 0)
|
||||
{
|
||||
perror("read");
|
||||
exit(1);
|
||||
}
|
||||
if (check_format(&input) != 0)
|
||||
{
|
||||
puts("Wrong flag format!");
|
||||
exit(1);
|
||||
}
|
||||
uint32_t (* input_ints)[0x12] = &input;
|
||||
for (int32_t i = 0; i <= 0x11; i += 2)
|
||||
{
|
||||
shared_mem[0] = (shared_mem[0] ^ input_ints[i]);
|
||||
shared_mem[1] = (shared_mem[1] ^ input_ints[i + 1]);
|
||||
for (int32_t j = 0; j < 0x2c; j += 1)
|
||||
start_pod(pod_infos[j].n_children, code, 9);
|
||||
*(uint64_t*)(((((i + (i >> 0x1f)) >> 1) + 0x100) << 3) + shared_mem_original)
|
||||
= *(uint64_t*)(shared_mem + 0xb0);
|
||||
shared_mem = &shared_mem[0x2c];
|
||||
}
|
||||
shared_mem = shared_mem_original;
|
||||
int64_t lose = 0;
|
||||
for (int32_t i = 0; i <= 8; i++)
|
||||
lose = (lose | (ref[i] ^ *(uint64_t*)(shared_mem + 0x800) + (i_1 << 3)));
|
||||
if (lose != 0)
|
||||
puts("Nope.");
|
||||
else
|
||||
puts("Win!!");
|
||||
if (munmap(shared_mem, 1) != 0xffffffff)
|
||||
return 0;
|
||||
perror("munmap");
|
||||
exit(1);
|
||||
}
|
||||
```
|
||||
|
||||
### Check format
|
||||
|
||||
Let's take a quick look at the `check_format` function:
|
||||
|
||||
```c
|
||||
uint64_t check_format(int32_t* input)
|
||||
{
|
||||
shared_mem[0] = input[0];
|
||||
shared_mem[1] = 0x1337;
|
||||
shared_mem[2] = 0xa4e1a60a;
|
||||
start_pod(5, check_bytecode, 0x78 / 10);
|
||||
return 0 | shared_mem[0] | shared_mem[1] | shared_mem[2];
|
||||
}
|
||||
```
|
||||
|
||||
We can see that it initializes the shared memory with the first
|
||||
`uint32_t` of the input then starts the same `start_pod` function
|
||||
than in main.
|
||||
|
||||
|
||||
### Start pod
|
||||
|
||||
The `start_pod` function takes as first parameter what I called a
|
||||
`pod_info` struct, which is just two `uint32_t`, the first one
|
||||
is the number of children the pod will fork, the second one is an
|
||||
offset in some array of `uint16_t` I called `code` given in
|
||||
parameter, you will understand the name really fast once we check
|
||||
the `child` function.
|
||||
|
||||
The last parameter is the size of a single `code` block given to
|
||||
`child`. Thus offsetting by this much between each `fork`.
|
||||
|
||||
In my terminology, a `pod` is a complete run of all the children
|
||||
denoted by their `pod_info` and associated `code`.
|
||||
|
||||
```c
|
||||
__pid_t start_pod(int32_t pod_info[2], uint16_t* code, int64_t code_size)
|
||||
|
||||
{
|
||||
for (int32_t i = 0; i < pod_info[0]; i = (i + 1))
|
||||
{
|
||||
pid_t pid = fork();
|
||||
if (pid == 0xffffffff)
|
||||
{
|
||||
perror("fork");
|
||||
exit(1);
|
||||
}
|
||||
if (pid == 0)
|
||||
{
|
||||
child(&code[(i + pod_info[1]) * code_size]);
|
||||
/* no return */
|
||||
}
|
||||
}
|
||||
__pid_t i;
|
||||
do
|
||||
{
|
||||
i = wait(nullptr);
|
||||
} while (i > 0);
|
||||
return i;
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
### Child
|
||||
|
||||
We are met with a `while true` loop, which selects an `uint16_t`
|
||||
from the `code` array and dispatches it in a huge switch.
|
||||
|
||||
I immediatly recognize the pattern of a virtual machine,
|
||||
and start identifying the instruction pointer `ip` and the
|
||||
`stack` by looking the first few instructions of the switch.
|
||||
|
||||
I will not show how I reversed all the instruction as many of
|
||||
them are really similar but I will show the interesting ones.
|
||||
|
||||
```c
|
||||
void child(uint16_t* code) __noreturn
|
||||
|
||||
{
|
||||
uint32_t stack[0x400];
|
||||
memset(&stack, 0, 0x1000);
|
||||
int32_t next_ip = 0;
|
||||
int32_t sp = 0;
|
||||
uint16_t opcode;
|
||||
while (true)
|
||||
{
|
||||
int32_t ip = netx_ip;
|
||||
next_ip = ip + 1;
|
||||
opcode = code[ip];
|
||||
switch (opcode)
|
||||
{
|
||||
case 0x0:
|
||||
{
|
||||
...
|
||||
}
|
||||
case 0x1:
|
||||
...
|
||||
}
|
||||
}
|
||||
if (opcode != 0x12)
|
||||
exit(1);
|
||||
exit(0);
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
## Instruction set analysis
|
||||
|
||||
### Push
|
||||
|
||||
First let's look at opcodes `0x1` and `0x2`.
|
||||
|
||||
These are how I recognized and was able to rename the stack
|
||||
memory and stack pointers.
|
||||
|
||||
We can see that the first instruction takes one operand right
|
||||
after the opcode, it then increments the stack pointer, fetches
|
||||
an `uint32_t` from the shared memory, indexed by the first
|
||||
operand, and stores it in the stack.
|
||||
|
||||
Basically a `push mem` instruction
|
||||
|
||||
The second one is really similar but takes two immediate operands,
|
||||
both operands are `uint16_t` but they are packed as a single
|
||||
`uint32_t` and stored on the stack, so this is the `push imm`
|
||||
instruction
|
||||
|
||||
```c
|
||||
case 1:
|
||||
{
|
||||
int32_t operand_ptr = next_ip;
|
||||
next_ip = (operand_ptr + 1);
|
||||
int32_t old_sp = sp;
|
||||
sp = old_sp + 1;
|
||||
stack[old_sp] = shared_mem[code[operand_ptr]];
|
||||
break;
|
||||
}
|
||||
case 2:
|
||||
{
|
||||
int32_t operand2_ptr = next_ip + 1;
|
||||
int64_t operand1_ptr = next_ip;
|
||||
next_ip = operand2_ptr + 1;
|
||||
int32_t old_sp = sp;
|
||||
sp = old_sp + 1;
|
||||
stack[old_sp] = code[operand1_ptr] | (code[operand2_ptr] << 0x10);
|
||||
break;
|
||||
}
|
||||
```
|
||||
|
||||
### Pop
|
||||
|
||||
This is the inverse operation, takes an `uint32_t` from the stack
|
||||
and stores it in the shared memory indexed on the instruction's
|
||||
operand.
|
||||
|
||||
```c
|
||||
case 4:
|
||||
{
|
||||
int32_t operand_ptr = next_ip;
|
||||
next_ip = operand_ptr + 1;
|
||||
uint32_t operand = code[operand_ptr];
|
||||
sp = sp - 1;
|
||||
int32_t val = stack[sp];
|
||||
stack[sp] = 0;
|
||||
shared_mem[operand] = val;
|
||||
break;
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
### Add
|
||||
|
||||
I will show only a single arithmetic instruction, all the others
|
||||
work in a similar way:
|
||||
|
||||
This one pops two operands from the stack, add them together, and
|
||||
stores the result back on the stack.
|
||||
|
||||
So we now know that this VM is stack based, similar to `python`
|
||||
or `WASM` bytecode, operands and result of each instruction are
|
||||
fetched and stored from/on the stack.
|
||||
|
||||
```c
|
||||
case 6:
|
||||
{
|
||||
int32_t first_op_ptr = (sp - 1);
|
||||
int32_t stack_op = stack[first_op_ptr];
|
||||
stack[first_op_ptr] = 0;
|
||||
int32_t second_op_ptr = first_op_ptr - 1;
|
||||
int32_t stack_op2 = stack[second_op_ptr];
|
||||
stack[second_op_ptr] = 0;
|
||||
sp = second_op_ptr + 1;
|
||||
stack[second_op_ptr] = stack_op2 + stack_op;
|
||||
break;
|
||||
}
|
||||
```
|
||||
|
||||
### IPC
|
||||
|
||||
Before doing more work, two other instructions are really
|
||||
important, check the code first:
|
||||
|
||||
```c
|
||||
case 3:
|
||||
{
|
||||
int32_t operand_ptr = next_ip;
|
||||
next_ip = (operand_ptr + 1);
|
||||
uint32_t operand_1 = code[operand_ptr];
|
||||
sp = sp - 1;
|
||||
int32_t val = stack[sp];
|
||||
stack[sp] = 0;
|
||||
for (int32_t i = 0; i < operand; i++)
|
||||
{
|
||||
int32_t operand_i_ptr = next_ip;
|
||||
next_ip = operand_i_ptr + 1;
|
||||
if (write(pipes[code[operand_i_ptr]][1], &val, 4) == -1)
|
||||
{
|
||||
perror("write");
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
```
|
||||
|
||||
This instruction takes one operand from the stack and one operand
|
||||
after the opcode.
|
||||
|
||||
The operand encoded in the instruction is used to know how many
|
||||
more operands are left.
|
||||
|
||||
For each of them, the instruction will write the stack operand in
|
||||
the pipe corresponding to the current operand.
|
||||
|
||||
We can guess that this is how IPC is performed between each child.
|
||||
|
||||
So let's look at the read instruction:
|
||||
|
||||
It works in a really similar way and takes the same operand,
|
||||
except that this time it will setup an epoll instance to read on
|
||||
very pipe given as operand and store the `read` output on the
|
||||
stack for each operand.
|
||||
|
||||
```c
|
||||
case 0:
|
||||
{
|
||||
int32_t n_operands_ptr = next_ip;
|
||||
next_ip = n_operands_ptr + 1;
|
||||
uint32_t n_operands = code[n_operands_ptr];
|
||||
int32_t epoll = epoll_create1(0);
|
||||
if (epoll == 0xffffffff)
|
||||
{
|
||||
perror("epoll_create1");
|
||||
exit(1);
|
||||
}
|
||||
for (int32_t i = 0; i < n_operands; i++)
|
||||
{
|
||||
int32_t n_operands_i_ptr = next_ip;
|
||||
next_ip = n_operands_i_ptr + 1;
|
||||
int32_t fd = pipes[code[n_operands_i_ptr]][0];
|
||||
int32_t epoll_event = 1;
|
||||
int64_t var_1100_1 = fd | (i << 0x20);
|
||||
if (epoll_ctl(epoll, 1, fd, &epoll_event) != 0)
|
||||
{
|
||||
perror("epoll_ctl");
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
uint32_t n_operands_cpy = n_operands;
|
||||
do
|
||||
{
|
||||
struct epoll_event events;
|
||||
int32_t nb_events = epoll_wait(epoll, &events, 1, 0xffffffff);
|
||||
for (int32_t j = 0; j < nb_events; j++)
|
||||
{
|
||||
// Weird but basically recovers the FD from the event
|
||||
int64_t fd = *(j * 0xc + &var_8) - 0x1104;
|
||||
if (read(fd, &stack[(fd >> 0x20) + sp], 4) <= 0)
|
||||
{
|
||||
perror("read");
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
n_operands_cpy = n_operands_cpy - 1;
|
||||
} while (n_operands_cpy != 0);
|
||||
sp = sp + n_operands;
|
||||
if (close(epoll) != 0)
|
||||
{
|
||||
perror("close");
|
||||
exit(1);
|
||||
}
|
||||
break;
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
## Disassembling
|
||||
|
||||
Right, so let's not look too much at the IPC thingy.
|
||||
|
||||
I will start by disassembling the byte code of independant
|
||||
children, then we will see if we can deduce patterns.
|
||||
|
||||
So I implemented a `binaryninja` plugin (my predilection decompiler) for the VM.
|
||||
|
||||
{{< code file="/static/megalosaure/src/plugin/__init__.py" language="python" >}}
|
||||
|
||||
Remember the `start_pod` and `check_format` functions ?
|
||||
|
||||
The check format passed a specific byte code to only 5 children.
|
||||
|
||||
This is probably a good first look
|
||||
|
||||
Here is how the plugin looked like on the check format bytecode:
|
||||
|
||||
{{< image src="/megalosaure/binja_plugin.png" style="border-radius: 8px;" >}}
|
||||
|
||||
Every function defined here is a specific child.
|
||||
|
||||
The first one pushes the first `uint32_t` of the `shared_memory`
|
||||
(I wrote this as `m[0x0]` in the disassembler)
|
||||
on the stack, then pops it and writes it on the first pipe (`r0x0`).
|
||||
|
||||
I consider pipes as registers.
|
||||
|
||||
The second child does the same but with `m[0x1]` and `r0x1`.
|
||||
|
||||
Third child reads `r0x0`, then `r0x1`, multiplies the two values
|
||||
and writes the result to `r0x2`
|
||||
|
||||
Fourth child reads `r0x2`, pushes `m[0x2]`, xor both values,
|
||||
and writes the result to `r0x3`.
|
||||
|
||||
Finally, the last child reads `r0x3`, dupplicates the value on the
|
||||
stack twice and pop them all in `m[0x0]`, `m[0x1]` and `m[0x2]`
|
||||
|
||||
If we look again at the `check_format` function:
|
||||
|
||||
```c
|
||||
uint64_t check_format(int32_t* input)
|
||||
{
|
||||
shared_mem[0] = input[0];
|
||||
shared_mem[1] = 0x1337;
|
||||
shared_mem[2] = 0xa4e1a60a;
|
||||
start_pod(5, check_bytecode, 0x78 / 10);
|
||||
return 0 | shared_mem[0] | shared_mem[1] | shared_mem[2];
|
||||
}
|
||||
```
|
||||
|
||||
It checks that once the pod has executed, `m[0:3]` is all `0`.
|
||||
|
||||
Doing it in the inverse order, it means that the result of the
|
||||
xor must be 0, thus `input[0] * 0x1337 == 0xa4e1a60a`
|
||||
|
||||
This small script does the modular inverse the retrieve
|
||||
`input[0]`:
|
||||
|
||||
```python
|
||||
#!/usr/bin/env python3
|
||||
|
||||
from Crypto.Util.number import inverse
|
||||
import struct
|
||||
import os
|
||||
|
||||
N = 2**32
|
||||
def reverse(desired_out, mult):
|
||||
return ((desired_out) * inverse(mult, N)) % N
|
||||
|
||||
first = reverse(0xa4e1a60a, 0x1337)
|
||||
print(struct.pack('<L', first))
|
||||
```
|
||||
|
||||
With this output:
|
||||
|
||||
```console
|
||||
$ ./invert.py
|
||||
b'FCSC'
|
||||
```
|
||||
|
||||
Good, we are definitely on the right track.
|
||||
|
||||
|
||||
## Lifting
|
||||
|
||||
Great but now if we look at real pods launched for the flag checking,
|
||||
they contain thousands of children, and have 2 inputs instead of one
|
||||
(given through `m[0x0]` and `m[0x1]`)
|
||||
|
||||
We need to do something smart.
|
||||
|
||||
We noticed in the `check_format` example that children essentialy
|
||||
recover one or two inputs (from memory, immediate, or register),
|
||||
perform a single operation, and output the result to a register
|
||||
or memory.
|
||||
|
||||
Looking back at the `code_size` given to `start_pod` in the `main` function, we can see that there are at most 9 instructions per child.
|
||||
|
||||
So it is unlikely that the real check children can do much more
|
||||
than take inputs, compute a single operation and send its outputs.
|
||||
|
||||
The `binja` plugin must be improved, and we will throw away the
|
||||
binja part actually.
|
||||
|
||||
Instead of disassembling independant children, I need to disassemble
|
||||
a whole pod.
|
||||
|
||||
### Creating an AST
|
||||
|
||||
First thing we can build is each child's register dependencies.
|
||||
I will simply mark which registers the child reads from and which
|
||||
ones he writes to.
|
||||
|
||||
Now, knowing by which register a child is "locked" by reading
|
||||
and which one he "unlocks" by writing, I can build the dependency
|
||||
graph of all children.
|
||||
|
||||
To do that I implemented a simple algorithm which marks locked
|
||||
and ready registers and by which child a register was unlocked.
|
||||
|
||||
Any child wanting to read a register will be able to do so only
|
||||
if it is unlocked, if it is, I will give the current child a
|
||||
reference to the child which originally unlocked the register
|
||||
it is trying to read. The register will thus be consumed by the
|
||||
child and be marked as locked again.
|
||||
|
||||
Any child which wants to write to a regiser will simply unlock
|
||||
the register and mark itself as the one which unlocked it.
|
||||
Obviously, this can only be done if all the child's registers
|
||||
where consumed, otherwise, the child is still waiting for its
|
||||
input and cannot write its output.
|
||||
|
||||
We do this in a loop until all children have been scheduled.
|
||||
|
||||
Inspecting the built graph, I quickly notice that all children
|
||||
converge to a single output child and that there is no circular
|
||||
dependency. The graph is thus an AST.
|
||||
|
||||
Each node of the AST performs and outputs a single operation based
|
||||
on one or two inputs registers.
|
||||
|
||||
The leafs of the AST do not have dependencies, they simply
|
||||
take inputs from immediate values or shared memory.
|
||||
|
||||
I also notice that the root of the AST has a single input,
|
||||
which is simply outputed in shared memory.
|
||||
|
||||
Further analysis will show me that in the AST of every pod, given
|
||||
pod number `n`:
|
||||
|
||||
* Only the root child outputs to memory, and at index `n+2`
|
||||
* Only the leafs reads from memory, at indexes `n` and `n+1`
|
||||
|
||||
|
||||
### Recalling the objective
|
||||
|
||||
As a reminder, here is the for loop which computes the result
|
||||
tested against the `ref`.
|
||||
|
||||
```c
|
||||
uint32_t (* input_ints)[0x12] = &input;
|
||||
for (int32_t i = 0; i <= 0x11; i = (i + 2))
|
||||
{
|
||||
shared_mem[0] = (shared_mem[0] ^ input_ints[i]);
|
||||
shared_mem[1] = (shared_mem[1] ^ input_ints[i + 1]);
|
||||
for (int32_t j = 0; j < 0x2c; j++)
|
||||
start_pod(pod_infos[j].n_children, code, 9);
|
||||
*(uint64_t*)(((((i + (i >> 0x1f)) >> 1) + 0x100) << 3) + shared_mem_original)
|
||||
= *(uint64_t*)(shared_mem + 0xb0);
|
||||
shared_mem = &shared_mem[0x2c];
|
||||
}
|
||||
```
|
||||
|
||||
The output is recovered from `shared_memory[0x2c]` (`0xb0` is `0x2c * 4`) on 8 bytes, which are the output of the two last pods
|
||||
|
||||
So we have `0x2c` pods, each one outputting the inputs for the next
|
||||
one.
|
||||
|
||||
Once all pods have run, notice we shift, the shared_mem by `0x2c`
|
||||
thus right on the last pods output. Which will be used to xor
|
||||
the next input for the run of `0x2b` pods.
|
||||
|
||||
This seems like a `cbc` mode of operation but I did not made any
|
||||
link to block ciphers at that time.
|
||||
|
||||
I will split the problem by solving each block of 8 input bytes
|
||||
independently.
|
||||
|
||||
So I have a reference `uint64_t`, I want to find the two
|
||||
`uint32_t` which will give this output after passing in all
|
||||
of my `0x2c` ASTs.
|
||||
|
||||
### Do the intstructions backward :clown:
|
||||
|
||||
I thought about simply taking the desired output and inverting
|
||||
every operation since I have the complete AST. However I quickly
|
||||
noticed it was not possible because of operations like `shl`, `shr`, `or` and `and`.
|
||||
|
||||
These operations plus the fact that our inputs are fetched from
|
||||
multiple leafs of the AST make the whole thing close to
|
||||
impossible to invert.
|
||||
|
||||
### z3 attempt
|
||||
|
||||
This is actually not the attempt I made first but I went back and
|
||||
forth on many ideas so I will explain my failed ideas here so
|
||||
it doesn't cut the flow of the rest of the writeup.
|
||||
|
||||
So at some point I tried to build a z3 solver by traversing the
|
||||
AST.
|
||||
|
||||
It did not work out in the end because I found a promising
|
||||
solution which was showing results in parallel.
|
||||
|
||||
Now I know that it didn't find anything because I built the
|
||||
solver by traversing all the `0x2c` ASTs, which is too much
|
||||
obviously.
|
||||
|
||||
Basically my mistake was that at the time, I didn't know that
|
||||
the VM was a symetric cipher, thus I has no idea of the unicity
|
||||
of the input. So I thought that I NEEDED, to add a constraint
|
||||
on the first input `uint32_t` (which I knew was `FCSC`) to
|
||||
find a single solution.
|
||||
|
||||
But now I know that the input of every AST is unique so
|
||||
solving ASTs one by one is much easier.
|
||||
|
||||
|
||||
### Lifting to C
|
||||
|
||||
My actual first idea was that I knew that the flag started with
|
||||
`FCSC{`, which only let me 3 unknown bytes in the first block.
|
||||
|
||||
This would be fairly trivial to bruteforce if the VM did not need
|
||||
3 minutes to compute a single block.
|
||||
|
||||
I could have implemented an interpreter on top of the AST, but
|
||||
since I decided to go for the bruteforce solution, I went for it
|
||||
all and transpiled it to C.
|
||||
|
||||
{{< code file="/static/megalosaure/src/disasm.py" language="python" >}}
|
||||
|
||||
Running it will give this output, and a file `megalosaure.c`
|
||||
|
||||
|
||||
```console
|
||||
$ ./disasm.py
|
||||
[*] '/home/juju/ctf/fcsc_2024/reverse/megalosaure/megalosaure'
|
||||
Arch: amd64-64-little
|
||||
RELRO: Partial RELRO
|
||||
Stack: No canary found
|
||||
NX: NX enabled
|
||||
PIE: PIE enabled
|
||||
[+] Loading virtual machines
|
||||
[+] Lifting AST
|
||||
[+] Transpiling to C
|
||||
[+] Transpiled to ./megalosaure.c
|
||||
```
|
||||
|
||||
The `megalosaure.c` file is an implementation of a single run of
|
||||
all the `0x2c` pods.
|
||||
|
||||
If you are interesed the disasm.py script also contains the code
|
||||
of my z3 attempt.
|
||||
|
||||
## Bruteforcing until we win
|
||||
|
||||
### First block
|
||||
|
||||
The first block is trivial to bruteforce so I implemented a
|
||||
simple bruteforce c program which links against a heavily optimised `megalosaure.c`.
|
||||
|
||||
{{< code file="/static/megalosaure/src/simple.c" language="c" >}}
|
||||
|
||||
With the following `Makefile` (which also has the final targets for the final
|
||||
solver)
|
||||
|
||||
{{< code file="/static/megalosaure/src/Makefile" language="makefile" >}}
|
||||
|
||||
You can run `make simple` to build this simple bruteforcer for the first block.
|
||||
|
||||
```console
|
||||
$ ./simple
|
||||
FCSC{454
|
||||
```
|
||||
|
||||
Great I have the first 8 bytes of the flag. Now what ?
|
||||
|
||||
This strategy will not work on other blocks, where all of the 8
|
||||
bytes are unknown.
|
||||
|
||||
### Angr attempt
|
||||
|
||||
So since I had the source code, I thought that I could try angr
|
||||
on this one, surprisingly enough, this did not give anything.
|
||||
|
||||
For the same reason as z3, doing all the pods at once is just
|
||||
too much.
|
||||
|
||||
### Reducing the character set
|
||||
|
||||
Now things are becoming really nasty for my solver, I was
|
||||
working in parallel on the z3 solver and as I ran it on my first
|
||||
try, I thought
|
||||
|
||||
> Hey "FCSC{454" does not look like a funny string, maybe this flag is only a hexstring
|
||||
|
||||
So I started bruteforcing all the blocks but only on hex digits,
|
||||
which comes back to 2^32 iterations per block, completly doable.
|
||||
|
||||
However just remember that before being inputted in the first
|
||||
pod, the input is xored with the output of the previous block.
|
||||
|
||||
Since I have the reference array, I know the desired output of
|
||||
all the blocks and can bruteforce them in parralel.
|
||||
|
||||
Watch out, the code is dirty.
|
||||
|
||||
{{< code file="/static/megalosaure/src/main.c" language="c" >}}
|
||||
|
||||
You can run `make` to compile the solver.
|
||||
|
||||
It takes about 20 minutes to run, and prints each block when it
|
||||
finds one.
|
||||
|
||||
```console
|
||||
$ time ./solver
|
||||
Block 6: 06a5611b
|
||||
Block 1: 2d32e27c
|
||||
Block 4: 4016b156
|
||||
Block 8: 420ac}
|
||||
Block 7: c18edd32
|
||||
Block 3: d3418e7a
|
||||
Block 2: de2d7cf7
|
||||
Block 5: e4df7f0c
|
||||
|
||||
real 21m18,662s
|
||||
user 107m44,082s
|
||||
sys 0m0,936s
|
||||
```
|
||||
|
||||
I then reconstituted the flag manually by pasting each block
|
||||
|
||||
`FCSC{4542d32e27cde2d7cf7d3418e7a4016b156e4df7f0c06a5611bc18edd32420ac}`
|
||||
|
||||
After solving the challenge and discussing with its author,
|
||||
I learned that the VM actually implemented a symetric block cipher (SIMON-64-128), with a null IV, and CBC mode of operation.
|
||||
|
||||
The key was embeded in the code, so it was actually a whitebox.
|
||||
|
||||
Looking back at everything, we can clearly see that one pod is
|
||||
actually a round of encryption, a block is encrypted through
|
||||
`0x2c` rounds, with each block input being xored with the output
|
||||
of the previous block (0 for the first block), thus the CBC and
|
||||
null IV.
|
@ -1,6 +1,6 @@
|
||||
---
|
||||
title: "Lifting a reloc based VM | Svartalfheim @ FCSC 2024"
|
||||
date: "2024-04-09 18:00:00"
|
||||
date: "2024-04-14 22:00:00"
|
||||
author: "Juju"
|
||||
tags: ["Reverse", "Writeup", "fcsc"]
|
||||
toc: true
|
||||
@ -13,10 +13,9 @@ only a few bytes of machine code, but after playing with it, you might notice
|
||||
some quantum behaviours. The program might be patching itself when you are
|
||||
not looking at it, so stay alert :eyes:.
|
||||
|
||||
{{< image src="/brachiosaure/meme.jpg" style="border-radius: 8px;" >}}
|
||||
|
||||
## Challenge description
|
||||
`reverse` | `479 pts` `9 solves` `:star::star::star:`
|
||||
|
||||
`reverse` | `469 pts` `13 solves` `:star::star::star:`
|
||||
|
||||
```
|
||||
Trouvez le flag accepté par le binaire.
|
||||
@ -52,7 +51,7 @@ Here is the decompiled code of the entrypoint.
|
||||
{{< code file="/static/svartalfheim/main.c" language="c" >}}
|
||||
|
||||
Basically, it simply deletes a file named `_` from the current directory, then
|
||||
re-create it and opening it write mode.
|
||||
re-create it and open it write mode.
|
||||
|
||||
The process then dumps itself into the opened file, close it and execve the
|
||||
dumped file.
|
||||
@ -100,19 +99,19 @@ in my decompiler:
|
||||
|
||||
{{< image src="/svartalfheim/rela_patched.png" style="border-radius: 8px;" >}}
|
||||
|
||||
So the first two bytes that are patched are the relation table addr inside
|
||||
The first two bytes that are patched are the relocation table addr inside
|
||||
the dynamic table.
|
||||
|
||||
The last byte patched is the size of said relocation table.
|
||||
|
||||
This means that at the next execution, the program will have different relocations.
|
||||
|
||||
Maybe let's take a look at the original relocation table:
|
||||
Maybe we should take a look at the original relocation table:
|
||||
|
||||
{{< image src="/svartalfheim/original_relocs.png" style="border-radius: 8px;" >}}
|
||||
|
||||
Unusual relocations indeed. So the first one points to the relocation table
|
||||
addresse inside the dynamic table and the second one to the relocation table
|
||||
address inside the dynamic table and the second one to the relocation table
|
||||
size, also in the dynamic table, the two values that were patched in the next
|
||||
binary. We can already guess that the relocation table will be patched at
|
||||
every execution, running new relocations every time, just like a processor
|
||||
@ -133,6 +132,8 @@ Once again we can see relocs pointing to DT_RELA and DT_RELASZ values, but there
|
||||
When looking them up, we can see that these two addresses are located inside
|
||||
the symbol table. To be precise, the values of symbol `1` and `2` are patched.
|
||||
|
||||
Below is the corresponding symbol table:
|
||||
|
||||
{{< image src="/svartalfheim/second_symtab.png" style="border-radius: 8px;" >}}
|
||||
|
||||
Great so now let's run the binary a second time and inspect the third relocation table.
|
||||
@ -160,7 +161,7 @@ Now let's really look at the third relocation table and run it in our mind:
|
||||
|
||||
The first relocation is of type `0x8`, and has symbol `0x0` (which mean no symbol)
|
||||
|
||||
It points to the address of the `value`` of symbol `0x5`.
|
||||
It points to the address of the `value` of symbol `0x5`.
|
||||
|
||||
Relocation type `0x8` will simply put its `addend` value at the address pointed by its `addr` field. Thus storing `0xff` in the `0x5` symbol `value`
|
||||
|
||||
@ -171,7 +172,7 @@ Second relocation is of type `0x1` and symbol `0x1`.
|
||||
This relocation will take the `value` of symbol `0x1`, add the reloc
|
||||
`addend` value, and store the result at the relocation `addr`
|
||||
|
||||
So it looks like some sort of `add mem, reg, imm` instruction, considering
|
||||
So it looks like some sorts of `add mem, reg, imm` instruction, considering
|
||||
symbols as registers.
|
||||
|
||||
I'll do the third relocation and we will have the whole instruction set:
|
||||
@ -180,14 +181,14 @@ The type is `0x5`, symbol `0x1`. It will take the value of the corresponding sym
|
||||
|
||||
The assembly for this might look like `mov mem, [reg]`
|
||||
|
||||
Here we go, that's it, an instruction set of 3 instruction, cannot even
|
||||
branch or add 2 registers.
|
||||
Here we go, that's it, an instruction set of 3 instructions,
|
||||
there isn't even an instruction to branch or to add two registers together.
|
||||
|
||||
Let's write an interpreter for the VM so we can debug it.
|
||||
|
||||
### Writing the interpreter
|
||||
|
||||
Basically the interpreter will have multiple role in the analysis:
|
||||
Basically the interpreter will have multiple roles in the analysis:
|
||||
|
||||
* Get an execution trace and disassembly of the virtual machine
|
||||
* Set breakpoints during execution
|
||||
@ -195,19 +196,18 @@ Basically the interpreter will have multiple role in the analysis:
|
||||
|
||||
{{< code file="/static/svartalfheim/interpreter.py" language="py" >}}
|
||||
|
||||
|
||||
This interpreter stops every time that the VM patches the native code section
|
||||
of the binary, this way I can stop whenever IO is performed, dump the binary
|
||||
and analyse it.
|
||||
|
||||
The VM patches the native code a total of 7 times:
|
||||
|
||||
* Setup a syscall to write to prompt on stdout
|
||||
* Immediately after, reset the native code the its original content
|
||||
* Setup a syscall to write the prompt on stdout
|
||||
* Immediately after, reset the native code to its original content
|
||||
* Setup a syscall to read the flag from stdin
|
||||
* Immediately after, reset the native code the its original content
|
||||
* Immediately after, reset the native code to its original content
|
||||
* Setup a syscall to write the flag validation
|
||||
* Immediately after, reset the native code the its original content
|
||||
* Immediately after, reset the native code to its original content
|
||||
* Setup a syscall to exit the program instead of the `execve` it again
|
||||
|
||||
Investigating the third dumped binary will show us the flag address given to `read`, which will allow us to inject it in our interpreter:
|
||||
@ -219,16 +219,17 @@ The interpreter also builds a disassembled execution trace:
|
||||
I tried to make it readable as if it was intel assembly.
|
||||
|
||||
I added some comments for easier analysis:
|
||||
* NATIVE CODE LOADING means tha this block (a complete run of a single relocation table) has patched the native code section
|
||||
* The comment hexstring is the data that is being outputed in the destination operand
|
||||
|
||||
* NATIVE CODE LOADING means that this block (a complete run of a single relocation table) has patched the native code section
|
||||
* The commented hexstring is the data that is being outputed in the destination operand
|
||||
* PATCHING CODE means that this instruction has a destination address pointing to the next instruction, meaning it is trying to patch its own code
|
||||
* PATCHING FAR is the same but on an instruction of the same block but not the next one
|
||||
|
||||
These were really helpful during analysis to have a reminder to check for code patching.
|
||||
|
||||
You might be saying that the shown assembly doesn't correspond to the
|
||||
instruction defined above as there was no such instruction as
|
||||
`add reg, reg, imm`, it is indeed true, but the trick is that every registers
|
||||
You might be saying that the example assembly below doesn't correspond to the
|
||||
instruction set defined above as there was no such instruction as
|
||||
`add reg, reg, imm`, it is indeed true, but the trick is that every register
|
||||
are memory mapped (since they are simply symbols in the symtab of the ELF), so a memory deref can actually be a register and my disassembler lifts this.
|
||||
|
||||
```console
|
||||
@ -264,11 +265,11 @@ are memory mapped (since they are simply symbols in the symtab of the ELF), so a
|
||||
|
||||
### Side channel attempt
|
||||
|
||||
My first attempt at a solver was really simple, I though that maybe the
|
||||
My first attempt at a solver was really simple, I thought that maybe the
|
||||
VM would check bytes one by one.
|
||||
|
||||
So I added a method to inject the flag into my interpreter's memory and tried
|
||||
to bruteforce the first char, watching for execution trace length every time.
|
||||
to bruteforce the first char, watching for the length of the execution trace every time.
|
||||
|
||||
But all 256 possible bytes gave the same number of instructions
|
||||
|
||||
@ -315,11 +316,11 @@ $0x0`, but said immediate `$0x0` was patched by previous instruction, with the
|
||||
value of `r13`, even if the instruction add an immediate, in this context,
|
||||
the immediate was patched with a register. Thus performing a `add mem, reg, reg`
|
||||
|
||||
The third instruction simply zeros out the 7 higher bytes of the `r13`
|
||||
The third instruction simply zeroes out the 7 higher bytes of the `r13`
|
||||
register, my disassembler did not lift the addresses of the higher bytes of
|
||||
regs but trust me on this one.
|
||||
|
||||
The comment on the second instruction shows us that the addition had a result of `0x1` (64 bits little endian) (`r6` had value 1), so these 3 instructions simply increments `r13`.
|
||||
The comment on the second instruction shows us that the addition had a result of `0x1` (64 bits little endian) (`r6` had value 1), so these 3 instructions simply increment `r13`.
|
||||
|
||||
|
||||
### Lookup tables
|
||||
@ -331,7 +332,7 @@ coming from an array indexed with the same counter as the flag.
|
||||
{{< image src="/svartalfheim/lut_lookup.png" style="border-radius: 8px;" >}}
|
||||
|
||||
The first block simply loads the current flag byte in `r11` (`0x46` = `'F'`)
|
||||
and the second one basically substitute the byte from the flag based on a lookup table.
|
||||
and the second one basically substitutes the byte from the flag based on a lookup table.
|
||||
|
||||
The LuT is indexed based on the flag byte and `r12`, which I assume is some
|
||||
sort of nonce to add the information of the position of the byte in the
|
||||
@ -347,8 +348,7 @@ uint64_t *LuT = 0x49000;
|
||||
r11 = *(LuT + r3);
|
||||
```
|
||||
|
||||
The next few blocks are not that important, store the LuTed byte in memory,
|
||||
basically increment string iterators, decrement size counters
|
||||
The next few blocks are not that important, they store the LuTed byte in memory, increment string iterators and decrement size counters
|
||||
|
||||
But then comes the one most important code pattern of this VM:
|
||||
|
||||
@ -358,7 +358,9 @@ But then comes the one most important code pattern of this VM:
|
||||
|
||||
These two blocks perform a branch
|
||||
|
||||
It essentially is a `test r7; jne mem` heres how it works after lifting:
|
||||
It essentially is a `test r7, r7; jne mem`
|
||||
|
||||
Here is how it works after lifting:
|
||||
|
||||
```c
|
||||
// First block
|
||||
@ -384,7 +386,7 @@ After that there is a really similar block of code, also performing lookups
|
||||
of some sort I did not really bother to understand (as the ones of the
|
||||
previous step) because I found a really interesting branch which was not a loop.
|
||||
|
||||
I notice a similar pattern than the for loop above, sligthly differentm but
|
||||
I notice a similar pattern than the for loop above, sligthly different but
|
||||
still some kind of jump table.
|
||||
|
||||
What stroke me is that as you can see on the screenshot bellow, it was
|
||||
@ -393,7 +395,7 @@ to a different branch than the one starting with `FCSC{`
|
||||
|
||||
{{< image src="/svartalfheim/check.png" style="border-radius: 8px;" >}}
|
||||
|
||||
What I did not notice at first is that there are two different branch in
|
||||
What I did not notice at first is that there are two different branchments in
|
||||
the screenshot (with the jump offsets marked in red). I noticed it quickly and
|
||||
backported it to my solver.
|
||||
I do not actually know what is the meaning of these 2 checks regarding the
|
||||
@ -405,9 +407,9 @@ check the value moved in `r4` is `0x18`.
|
||||
|
||||
And then bruteforced byte by byte:
|
||||
|
||||
While bruteforcing the `n`th byte, I need to hit the breakpoint succesfully (with `0x14` in `r4`) `2*n` times. If the breakpoint check fails once then the byte is fucked up.
|
||||
While bruteforcing the `n`th byte, I need to hit the breakpoint succesfully (with `0x18` in `r4`) `2*n` times. If the breakpoint check fails once then the byte is fucked up.
|
||||
|
||||
## Solver
|
||||
# Solver
|
||||
|
||||
Here is the complete solver code, with the interpreter, correct breakpoints and
|
||||
bruteforcing
|
||||
|
BIN
jujure/static/archiver/meme.jpg
Normal file
BIN
jujure/static/archiver/meme.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 63 KiB |
BIN
jujure/static/megalosaure/binja_plugin.png
Normal file
BIN
jujure/static/megalosaure/binja_plugin.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 103 KiB |
BIN
jujure/static/megalosaure/meme.jpg
Normal file
BIN
jujure/static/megalosaure/meme.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 92 KiB |
15
jujure/static/megalosaure/src/Makefile
Normal file
15
jujure/static/megalosaure/src/Makefile
Normal file
@ -0,0 +1,15 @@
|
||||
.PHONY: all run
|
||||
|
||||
all: ./solver
|
||||
|
||||
./simple: ./megalosaure.c simple.c
|
||||
gcc -Wno-overflow simple.c megalosaure.c -o simple -O3 -march=native -fno-pie -no-pie
|
||||
|
||||
./megalosaure.c: ./disasm.py
|
||||
./disasm.py
|
||||
|
||||
./solver: ./megalosaure.c main.c
|
||||
gcc -Wno-overflow main.c megalosaure.c -o solver -O3 -march=native -fno-pie -no-pie
|
||||
|
||||
run: all
|
||||
./solver
|
491
jujure/static/megalosaure/src/disasm.py
Executable file
491
jujure/static/megalosaure/src/disasm.py
Executable file
@ -0,0 +1,491 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
import struct
|
||||
from pwn import *
|
||||
from typing import Optional, List
|
||||
from Crypto.Util.number import inverse
|
||||
from z3 import *
|
||||
|
||||
|
||||
opcodes = {
|
||||
0x0: "pushread_i_f",
|
||||
0x1: "push_m",
|
||||
0x2: "push32_i_i",
|
||||
0x3: "popwrite_i_f",
|
||||
0x4: "pop_m",
|
||||
0x5: "dup",
|
||||
0x6: "add",
|
||||
0x7: "sub",
|
||||
0x8: "mul",
|
||||
0x9: "mod",
|
||||
0xa: "xor",
|
||||
0xb: "and",
|
||||
0xc: "or",
|
||||
0xd: "shr",
|
||||
0xe: "shl",
|
||||
0xf: "not",
|
||||
0x10: "neg",
|
||||
0x11: "nop",
|
||||
0x12: "exit",
|
||||
}
|
||||
|
||||
registers = [
|
||||
"ip",
|
||||
"sp"
|
||||
]
|
||||
|
||||
N = 2**32
|
||||
|
||||
|
||||
class Stream:
|
||||
i: int
|
||||
buf: bytes
|
||||
|
||||
def __init__(self, buf) -> None:
|
||||
self.pos = 0
|
||||
self.buf = buf
|
||||
|
||||
def read_u16(self) -> Optional[int]:
|
||||
try:
|
||||
val = struct.unpack("<H", self.buf[self.pos:self.pos + 2])
|
||||
self.pos += 2
|
||||
return val[0]
|
||||
except:
|
||||
return None
|
||||
|
||||
def read_i16(self) -> Optional[int]:
|
||||
try:
|
||||
val = struct.unpack("<h", self.buf[self.pos:self.pos + 2])
|
||||
self.pos += 2
|
||||
return val[0]
|
||||
except:
|
||||
return None
|
||||
|
||||
def read_u32(self) -> Optional[int]:
|
||||
try:
|
||||
val = struct.unpack("<I", self.buf[self.pos:self.pos + 4])
|
||||
self.pos += 4
|
||||
return val[0]
|
||||
except:
|
||||
return None
|
||||
|
||||
def read_i32(self) -> Optional[int]:
|
||||
try:
|
||||
val = struct.unpack("<i", self.buf[self.pos:self.pos + 4])
|
||||
self.pos += 4
|
||||
return val[0]
|
||||
except:
|
||||
return None
|
||||
|
||||
class Operand:
|
||||
pass
|
||||
|
||||
|
||||
class Register(Operand):
|
||||
index: int
|
||||
name: str
|
||||
|
||||
def __init__(self, index: int) -> None:
|
||||
self.index = index
|
||||
self.name = f"r{hex(index)}"
|
||||
|
||||
class Mem(Operand):
|
||||
index: int
|
||||
name: str
|
||||
|
||||
def __init__(self, index: int) -> None:
|
||||
self.index = index
|
||||
self.name = f"m[{hex(index)}]"
|
||||
|
||||
class Imm(Operand):
|
||||
value: int
|
||||
unsigned: int
|
||||
|
||||
def __init__(self, value: int) -> None:
|
||||
self.value = value
|
||||
self.raw = struct.unpack("<I", struct.pack("<i", self.value))[0]
|
||||
|
||||
|
||||
class Instruction:
|
||||
opcode: int
|
||||
operands: List[Operand]
|
||||
addr: int
|
||||
name: str
|
||||
size: int
|
||||
|
||||
def __init__(self, opcode, operands, opcodes) -> None:
|
||||
self.opcode = opcode
|
||||
self.operands = operands
|
||||
self.name = opcodes[self.opcode] if self.opcode in opcodes else "invalid"
|
||||
self.size = 2 * (len(operands) + 1)
|
||||
|
||||
|
||||
@staticmethod
|
||||
def disassemble(data: bytes) -> 'Instruction':
|
||||
stream = Stream(data)
|
||||
opcode = stream.read_u16()
|
||||
operands = []
|
||||
|
||||
if opcode not in opcodes:
|
||||
return Instruction(opcode, [], addr, opcodes)
|
||||
|
||||
mnemonic = opcodes[opcode]
|
||||
mnemonic_decomp = mnemonic.split('_')
|
||||
mnemonic_decomp.pop(0)
|
||||
|
||||
for element in mnemonic_decomp:
|
||||
if element == 'i':
|
||||
value = stream.read_u16()
|
||||
operand = Imm(value)
|
||||
operands.append(operand)
|
||||
elif element == 'm':
|
||||
value = stream.read_u16()
|
||||
operand = Mem(value)
|
||||
operands.append(operand)
|
||||
elif element == 'f':
|
||||
n_regs = operands[-1].value
|
||||
for i in range(n_regs):
|
||||
index = stream.read_u16()
|
||||
operand = Register(index)
|
||||
operands.append(operand)
|
||||
|
||||
return Instruction(opcode, operands, opcodes)
|
||||
|
||||
def to_string(self):
|
||||
asm = self.name
|
||||
|
||||
for op in self.operands:
|
||||
asm += ' '
|
||||
if isinstance(op, Register):
|
||||
asm += op.name
|
||||
elif isinstance(op, Mem):
|
||||
asm += op.name
|
||||
elif isinstance(op, Imm):
|
||||
asm += f"{hex(op.value)}"
|
||||
|
||||
return asm
|
||||
|
||||
def transpile(self):
|
||||
if self.name == "pop_m":
|
||||
return ''
|
||||
elif self.name == "push32_i_i":
|
||||
val = (self.operands[1].value << 0x10) | self.operands[0].value
|
||||
return f'{val}'
|
||||
elif self.name == "push_m":
|
||||
return f'm{self.operands[0].index}'
|
||||
elif self.name == "add":
|
||||
return '+'
|
||||
elif self.name == "sub":
|
||||
return '-'
|
||||
elif self.name == "mul":
|
||||
return '*'
|
||||
elif self.name == "mod":
|
||||
return '%'
|
||||
elif self.name == "xor":
|
||||
return '^'
|
||||
elif self.name == "and":
|
||||
return '&'
|
||||
elif self.name == "or":
|
||||
return '|'
|
||||
elif self.name == "not":
|
||||
return '~'
|
||||
elif self.name == "neg":
|
||||
return '-'
|
||||
elif self.name == "shr":
|
||||
return '>>'
|
||||
elif self.name == "shl":
|
||||
return '<<'
|
||||
else:
|
||||
raise
|
||||
|
||||
|
||||
|
||||
class Child:
|
||||
def __init__(self, pod, index):
|
||||
self.pod = pod
|
||||
self.index = index
|
||||
self.offset = (pod.offset + index) * self.pod.code_size
|
||||
self.code = self.pod.megalosaure.elf.read(self.pod.code_base + self.offset * 2, self.pod.code_size * 2)
|
||||
self.instructions = []
|
||||
self.depends = []
|
||||
self.unlocks = []
|
||||
self.inputs = []
|
||||
self.forced = False, 0
|
||||
self.main_instr = None
|
||||
while True:
|
||||
instr = Instruction.disassemble(self.code)
|
||||
self.code = self.code[instr.size:]
|
||||
self.instructions.append(instr)
|
||||
if instr.name == 'exit':
|
||||
break
|
||||
|
||||
elif instr.name == 'pushread_i_f':
|
||||
for reg in instr.operands[1:]:
|
||||
self.depends.append(reg.index)
|
||||
|
||||
elif instr.name == 'popwrite_i_f':
|
||||
for reg in instr.operands[1:]:
|
||||
self.unlocks.append(reg.index)
|
||||
|
||||
else:
|
||||
if self.main_instr != None:
|
||||
raise
|
||||
self.main_instr = instr
|
||||
|
||||
|
||||
def to_string(self):
|
||||
asm = ""
|
||||
for instr in self.instructions:
|
||||
asm += instr.to_string() + '\n'
|
||||
return asm
|
||||
|
||||
def consume_locks(self, locks):
|
||||
while self.depends != []:
|
||||
dependency = self.depends[0]
|
||||
if locks[dependency][0]:
|
||||
return
|
||||
self.inputs.append(locks[dependency][1])
|
||||
locks[dependency] = (True, None)
|
||||
self.depends.pop(0)
|
||||
|
||||
def is_schedulable(self, locks):
|
||||
return len(self.depends) == 0
|
||||
|
||||
def mark_unlocks(self, locks):
|
||||
for unlock in self.unlocks:
|
||||
locks[unlock] = (False, self)
|
||||
|
||||
|
||||
def invert(self, desired):
|
||||
instr = self.main_instr
|
||||
op = instr.name
|
||||
inputs = self.inputs
|
||||
|
||||
if len(inputs) == 0:
|
||||
if op == 'push_m':
|
||||
return desired
|
||||
elif op == 'push32_i_i':
|
||||
print(self.forced)
|
||||
raise
|
||||
else:
|
||||
print(op)
|
||||
|
||||
elif len(inputs) == 1:
|
||||
inp = inputs[0]
|
||||
if op == "pop_m":
|
||||
return inp.invert(desired)
|
||||
if op == "not":
|
||||
return inp.invert((~desired) % N)
|
||||
else:
|
||||
print(op)
|
||||
else:
|
||||
forced0 = inputs[0].forced
|
||||
forced1 = inputs[1].forced
|
||||
|
||||
if not forced0 and not forced1:
|
||||
return
|
||||
|
||||
forced_child = inputs[0] if forced0[0] else inputs[1]
|
||||
unk_child = inputs[1] if forced0[0] else inputs[0]
|
||||
|
||||
if op == 'xor':
|
||||
return unk_child.invert(desired ^ forced_child.forced[1])
|
||||
elif op == 'sub':
|
||||
if forced0:
|
||||
return unk_child.invert((desired + forced_child.forced[1]) % N)
|
||||
else:
|
||||
return unk_child.invert((-desired + forced_child.forced[1]) % N)
|
||||
elif op == 'add':
|
||||
return unk_child.invert((desired - forced_child.forced[1]) % N)
|
||||
elif op == 'and':
|
||||
return unk_child.invert(desired & forced_child.forced[1])
|
||||
elif op == 'or':
|
||||
return unk_child.invert(desired | forced_child.forced[1])
|
||||
elif op == 'mul':
|
||||
return unk_child.invert(((desired) * inverse(forced_child.forced[1], N)) % N)
|
||||
elif op == 'shl':
|
||||
return unk_child.invert(((desired) * inverse(forced_child.forced[1], N)) % N)
|
||||
else:
|
||||
print(op)
|
||||
|
||||
def transpile(self, indent=0):
|
||||
code = "(\n"
|
||||
indent += 4
|
||||
code += ' ' * indent
|
||||
instr = self.main_instr
|
||||
op = instr.name
|
||||
inputs = self.inputs
|
||||
|
||||
if len(inputs) == 0:
|
||||
code += instr.transpile()
|
||||
|
||||
elif len(inputs) == 1:
|
||||
inp = inputs[0]
|
||||
code += instr.transpile() + inp.transpile(indent)
|
||||
else:
|
||||
code += inputs[1].transpile(indent)
|
||||
code += instr.transpile()
|
||||
code += inputs[0].transpile(indent)
|
||||
code += '\n'
|
||||
indent -= 4
|
||||
code += ' ' * indent
|
||||
code += ")"
|
||||
return code
|
||||
|
||||
def z3(self, solver, memory):
|
||||
instr = self.main_instr
|
||||
op = instr.name
|
||||
inputs = self.inputs
|
||||
output = BitVec(f'{self.pod.index}_{self.index}', 32)
|
||||
|
||||
if len(inputs) == 0:
|
||||
if op == 'push_m':
|
||||
addr = instr.operands[0].index
|
||||
mem = memory[addr]
|
||||
solver.add(mem == output)
|
||||
elif op == 'push32_i_i':
|
||||
val = (instr.operands[1].value << 0x10) | instr.operands[0].value
|
||||
output = BitVecVal(val, 32)
|
||||
else:
|
||||
print(op)
|
||||
|
||||
elif len(inputs) == 1:
|
||||
inp = inputs[0]
|
||||
value = inp.z3(solver, memory)
|
||||
if op == "pop_m":
|
||||
addr = instr.operands[0].index
|
||||
mem = memory[addr]
|
||||
solver.add(mem == value)
|
||||
solver.add(mem == output)
|
||||
elif op == "not":
|
||||
solver.add(output == ~value)
|
||||
else:
|
||||
print(op)
|
||||
else:
|
||||
value0 = inputs[0].z3(solver, memory)
|
||||
value1 = inputs[1].z3(solver, memory)
|
||||
if op == "xor":
|
||||
solver.add(output == (value0 ^ value1))
|
||||
elif op == "or":
|
||||
solver.add(output == (value0 | value1))
|
||||
elif op == "and":
|
||||
solver.add(output == (value0 & value1))
|
||||
elif op == "add":
|
||||
solver.add(output == (value0 + value1))
|
||||
elif op == "sub":
|
||||
solver.add(output == (value1 - value0))
|
||||
elif op == "mul":
|
||||
solver.add(output == (value1 * value0))
|
||||
elif op == "shl":
|
||||
solver.add(output == (value1 << value0))
|
||||
elif op == "shr":
|
||||
solver.add(output == (value1 >> value0))
|
||||
else:
|
||||
print(op)
|
||||
return output
|
||||
|
||||
|
||||
class Pod:
|
||||
def __init__(self, n_childs, offset, megalosaure, i):
|
||||
self.megalosaure = megalosaure
|
||||
self.n_childs = n_childs
|
||||
self.offset = offset
|
||||
self.childs = []
|
||||
self.code_size = 9
|
||||
self.code_base = 0x50c0
|
||||
self.stages = []
|
||||
self.index = i
|
||||
for i in range(n_childs):
|
||||
self.childs.append(Child(self, i))
|
||||
|
||||
def build_ast(self):
|
||||
locks = [(True, None) for _ in range(0x26c9)]
|
||||
to_schedule = [child for child in self.childs]
|
||||
next_stage_schedule = [1]
|
||||
while next_stage_schedule != []:
|
||||
current_stage = []
|
||||
next_stage_schedule = []
|
||||
while to_schedule != []:
|
||||
child = to_schedule.pop(0)
|
||||
child.consume_locks(locks)
|
||||
if child.is_schedulable(locks):
|
||||
current_stage.append(child)
|
||||
child.mark_unlocks(locks)
|
||||
else:
|
||||
next_stage_schedule.append(child)
|
||||
to_schedule = next_stage_schedule
|
||||
self.stages.append(current_stage)
|
||||
return self.stages
|
||||
|
||||
|
||||
def transpile(self):
|
||||
code = f"uint32_t m{self.index + 2} = {self.stages[-1][0].transpile()};\n"
|
||||
return code
|
||||
|
||||
def z3(self, solver, memory):
|
||||
self.stages[-1][0].z3(solver, memory)
|
||||
|
||||
|
||||
class Megalosaure:
|
||||
name = "megalosaure"
|
||||
address_size = 2
|
||||
default_int_size = 4
|
||||
instr_aligment = 2
|
||||
max_instr_length = 12
|
||||
|
||||
def __init__(self, path):
|
||||
self.elf = ELF(path)
|
||||
print('[+] Loading virtual machines')
|
||||
self.podinfo_addresses = 0x444220
|
||||
self.pods = []
|
||||
for i in range(0x2c):
|
||||
podinfo_b = self.elf.read(self.podinfo_addresses + i * 8, 8)
|
||||
n_childs = struct.unpack('<L', podinfo_b[:4])[0]
|
||||
offset = struct.unpack('<L', podinfo_b[4:])[0]
|
||||
pod = Pod(n_childs, offset, self, i)
|
||||
self.pods.append(pod)
|
||||
|
||||
def build_ast(self):
|
||||
print('[+] Lifting AST')
|
||||
for pod in self.pods:
|
||||
pod.build_ast()
|
||||
|
||||
def transpile(self, path, depth):
|
||||
print('[+] Transpiling to C')
|
||||
code = "#include <stdint.h>\nuint64_t megalosaure(uint32_t m0, uint32_t m1) {\n"
|
||||
for i in range(depth):
|
||||
code += self.pods[i].transpile()
|
||||
code += f"return (((uint64_t)m{depth + 1}) << 32) | m{depth};\n"
|
||||
code += "}\n"
|
||||
|
||||
print(f'[+] Transpiled to {path}')
|
||||
with open(path, 'w') as f:
|
||||
f.write(code)
|
||||
return code
|
||||
|
||||
def z3(self, depth, desired):
|
||||
print('[+] Building z3 solver')
|
||||
|
||||
memory = [BitVec(f'm{i}', 32) for i in range(0x2e)]
|
||||
memory[0] = BitVecVal(0x43534346, 32)
|
||||
solver = Solver()
|
||||
for i in range(depth):
|
||||
self.pods[i].z3(solver, memory)
|
||||
|
||||
m44 = desired % (2**32)
|
||||
m45 = desired >> 32
|
||||
|
||||
solver.add(memory[44] == m44)
|
||||
solver.add(memory[45] == m45)
|
||||
|
||||
print('[+] Running solver')
|
||||
print(solver.check())
|
||||
m = solver.model()
|
||||
print(m)
|
||||
return code
|
||||
|
||||
|
||||
meg = Megalosaure('./megalosaure')
|
||||
meg.build_ast()
|
||||
#meg.z3(0x2c, 0x9b07e7ce91a8a7b5)
|
||||
meg.transpile('./megalosaure.c', 0x2c)
|
12
jujure/static/megalosaure/src/invert.py
Executable file
12
jujure/static/megalosaure/src/invert.py
Executable file
@ -0,0 +1,12 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
from Crypto.Util.number import inverse
|
||||
import struct
|
||||
import os
|
||||
|
||||
N = 2**32
|
||||
def reverse(desired_out, mult):
|
||||
return ((desired_out) * inverse(mult, N)) % N
|
||||
|
||||
first = reverse(0xa4e1a60a, 0x1337)
|
||||
print(struct.pack('<L', first))
|
88
jujure/static/megalosaure/src/main.c
Normal file
88
jujure/static/megalosaure/src/main.c
Normal file
@ -0,0 +1,88 @@
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
#include <unistd.h>
|
||||
#include <sys/wait.h>
|
||||
uint64_t megalosaure(uint32_t m0, uint32_t m1);
|
||||
|
||||
int block = 1;
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
char charset[18] = "0123456789abcdef}";
|
||||
|
||||
const uint64_t ref[9] = { 0x9b07e7ce91a8a7b5, 0x9e819eac35e7e97c, 0xfd401d3317aa6b5f, 0xdf16a32fbd9d5587, 0x80c561ac0dab4fae, 0x9237d1ddd368e209, 0x07ebe4f6ee26882c, 0xb72ffd11e878303b, 0x99d2a7dc8267bf3f };
|
||||
|
||||
|
||||
int charset_len = 16;
|
||||
|
||||
int pid = 0;
|
||||
for (int i = 0; i < 7; ++i)
|
||||
{
|
||||
if (pid == 0)
|
||||
{
|
||||
pid = fork();
|
||||
if (pid == 0)
|
||||
{
|
||||
block++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
char m0_c[8] = {'0', '0', '0', '0', '0', '0', '0', '0'};
|
||||
uint32_t *m0 = (uint32_t *)(&m0_c);
|
||||
uint32_t *m1 = (uint32_t *)(&m0_c[4]);
|
||||
uint64_t res;
|
||||
uint64_t x_int = ref[block - 1];
|
||||
char *x = (char*)&x_int;
|
||||
|
||||
if (block == 8)
|
||||
{
|
||||
charset_len += 2;
|
||||
}
|
||||
|
||||
for (int i0 = 0; i0 < 18; ++i0)
|
||||
{
|
||||
m0_c[0] = charset[i0] ^ x[0];
|
||||
for (int i1 = 0; i1 < charset_len; ++i1)
|
||||
{
|
||||
m0_c[1] = charset[i1] ^ x[1];
|
||||
for (int i2 = 0; i2 < charset_len; ++i2)
|
||||
{
|
||||
m0_c[2] = charset[i2] ^ x[2];
|
||||
for (int i3 = 0; i3 < charset_len; ++i3)
|
||||
{
|
||||
m0_c[3] = charset[i3] ^ x[3];
|
||||
for (int i4 = 0; i4 < charset_len; ++i4)
|
||||
{
|
||||
m0_c[4] = charset[i4] ^ x[4];
|
||||
for (int i5 = 0; i5 < charset_len; ++i5)
|
||||
{
|
||||
m0_c[5] = charset[i5] ^ x[5];
|
||||
for (int i6 = 0; i6 < charset_len; ++i6)
|
||||
{
|
||||
m0_c[6] = charset[i6] ^ x[6];
|
||||
for (int i7 = 0; i7 < charset_len; ++i7)
|
||||
{
|
||||
m0_c[7] = charset[i7] ^ x[7];
|
||||
res = megalosaure(*m0, *m1);
|
||||
if (res == ref[block])
|
||||
{
|
||||
char flag[9];
|
||||
flag[8] = 0;
|
||||
uint64_t *flag_ptr = (uint64_t*)flag;
|
||||
*flag_ptr = *m0 + (((uint64_t)*m1) << 32);
|
||||
*flag_ptr ^= x_int;
|
||||
printf("Block %d: %s\n", block, flag);
|
||||
if (pid != 0)
|
||||
waitpid(pid, NULL, 0);
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
BIN
jujure/static/megalosaure/src/megalosaure
Executable file
BIN
jujure/static/megalosaure/src/megalosaure
Executable file
Binary file not shown.
210
jujure/static/megalosaure/src/plugin/__init__.py
Normal file
210
jujure/static/megalosaure/src/plugin/__init__.py
Normal file
@ -0,0 +1,210 @@
|
||||
import struct
|
||||
from binaryninja import *
|
||||
|
||||
tI = lambda e: InstructionTextToken(InstructionTextTokenType.InstructionToken, e)
|
||||
tt = lambda e: InstructionTextToken(InstructionTextTokenType.TextToken, e)
|
||||
tr = lambda e: InstructionTextToken(InstructionTextTokenType.RegisterToken, e)
|
||||
ti = lambda e: InstructionTextToken(InstructionTextTokenType.IntegerToken, e, int(e, 16))
|
||||
ta = lambda e: InstructionTextToken(InstructionTextTokenType.PossibleAddressToken, e, int(e, 16))
|
||||
ts = lambda e: InstructionTextToken(InstructionTextTokenType.OperandSeparatorToken, e)
|
||||
|
||||
|
||||
opcodes = {
|
||||
0x0: "pushread_i_f",
|
||||
0x1: "push_m",
|
||||
0x2: "push32_i_i",
|
||||
0x3: "popwrite_i_f",
|
||||
0x4: "pop_m",
|
||||
0x5: "dup",
|
||||
0x6: "add",
|
||||
0x7: "sub",
|
||||
0x8: "mul",
|
||||
0x9: "mod",
|
||||
0xa: "xor",
|
||||
0xb: "and",
|
||||
0xc: "or",
|
||||
0xd: "shr",
|
||||
0xe: "shl",
|
||||
0xf: "not",
|
||||
0x10: "neg",
|
||||
0x11: "nop",
|
||||
0x12: "exit",
|
||||
}
|
||||
|
||||
registers = [
|
||||
"ip",
|
||||
"sp"
|
||||
]
|
||||
|
||||
|
||||
class Stream:
|
||||
i: int
|
||||
buf: bytes
|
||||
|
||||
def __init__(self, buf) -> None:
|
||||
self.pos = 0
|
||||
self.buf = buf
|
||||
|
||||
def read_u16(self) -> Optional[int]:
|
||||
try:
|
||||
val = struct.unpack("<H", self.buf[self.pos:self.pos + 2])
|
||||
self.pos += 2
|
||||
return val[0]
|
||||
except:
|
||||
return None
|
||||
|
||||
def read_i16(self) -> Optional[int]:
|
||||
try:
|
||||
val = struct.unpack("<h", self.buf[self.pos:self.pos + 2])
|
||||
self.pos += 2
|
||||
return val[0]
|
||||
except:
|
||||
return None
|
||||
|
||||
def read_u32(self) -> Optional[int]:
|
||||
try:
|
||||
val = struct.unpack("<I", self.buf[self.pos:self.pos + 4])
|
||||
self.pos += 4
|
||||
return val[0]
|
||||
except:
|
||||
return None
|
||||
|
||||
def read_i32(self) -> Optional[int]:
|
||||
try:
|
||||
val = struct.unpack("<i", self.buf[self.pos:self.pos + 4])
|
||||
self.pos += 4
|
||||
return val[0]
|
||||
except:
|
||||
return None
|
||||
|
||||
class Operand:
|
||||
pass
|
||||
|
||||
|
||||
class Register(Operand):
|
||||
index: int
|
||||
name: str
|
||||
|
||||
def __init__(self, index: int) -> None:
|
||||
self.index = index
|
||||
self.name = f"r{hex(index)}"
|
||||
|
||||
class Mem(Operand):
|
||||
index: int
|
||||
name: str
|
||||
|
||||
def __init__(self, index: int) -> None:
|
||||
self.index = index
|
||||
self.name = f"m[{hex(index)}]"
|
||||
|
||||
class Imm(Operand):
|
||||
value: int
|
||||
unsigned: int
|
||||
|
||||
def __init__(self, value: int) -> None:
|
||||
self.value = value
|
||||
self.raw = struct.unpack("<I", struct.pack("<i", self.value))[0]
|
||||
|
||||
|
||||
class Instruction:
|
||||
opcode: int
|
||||
operands: List[Operand]
|
||||
addr: int
|
||||
name: str
|
||||
size: int
|
||||
|
||||
def __init__(self, opcode, operands, addr, opcodes) -> None:
|
||||
self.opcode = opcode
|
||||
self.operands = operands
|
||||
self.addr = addr
|
||||
self.name = opcodes[self.opcode] if self.opcode in opcodes else "invalid"
|
||||
self.size = 2 * (len(operands) + 1)
|
||||
|
||||
|
||||
@staticmethod
|
||||
def disassemble(data: bytes, addr: int, opcodes = opcodes, registers = registers) -> 'Instruction':
|
||||
stream = Stream(data)
|
||||
opcode = stream.read_u16()
|
||||
operands = []
|
||||
|
||||
if opcode not in opcodes:
|
||||
return Instruction(opcode, [], addr, opcodes)
|
||||
|
||||
mnemonic = opcodes[opcode]
|
||||
mnemonic_decomp = mnemonic.split('_')
|
||||
mnemonic_decomp.pop(0)
|
||||
|
||||
for element in mnemonic_decomp:
|
||||
if element == 'i':
|
||||
value = stream.read_i16()
|
||||
operand = Imm(value)
|
||||
operands.append(operand)
|
||||
elif element == 'm':
|
||||
value = stream.read_u16()
|
||||
operand = Mem(value)
|
||||
operands.append(operand)
|
||||
elif element == 'f':
|
||||
n_regs = operands[-1].value
|
||||
for i in range(n_regs):
|
||||
index = stream.read_u16()
|
||||
operand = Register(index)
|
||||
operands.append(operand)
|
||||
|
||||
return Instruction(opcode, operands, addr, opcodes)
|
||||
|
||||
|
||||
def to_tokens(self) -> List[InstructionTextToken]:
|
||||
tokens = [tI(self.name)]
|
||||
|
||||
for op in self.operands:
|
||||
tokens.append(tt(" "))
|
||||
if isinstance(op, Register):
|
||||
tokens.append(tr(op.name))
|
||||
elif isinstance(op, Mem):
|
||||
tokens.append(tr(op.name))
|
||||
elif isinstance(op, Imm):
|
||||
if "rel" in self.name or self.name == "call_imm":
|
||||
tokens.append(ta(str(hex(self.jmp_dest()))))
|
||||
else:
|
||||
tokens.append(ti(str(op.value)))
|
||||
tokens.append(tt(" ("))
|
||||
tokens.append(ti(str(hex(op.raw))))
|
||||
tokens.append(tt(")"))
|
||||
|
||||
return tokens
|
||||
|
||||
def info(self) -> InstructionInfo:
|
||||
info = InstructionInfo()
|
||||
info.length = self.size
|
||||
|
||||
if "exit" in self.name or "stop" in self.name or self.name == "ret":
|
||||
info.add_branch(BranchType.FunctionReturn)
|
||||
|
||||
return info
|
||||
|
||||
|
||||
|
||||
class Megalosaure(Architecture):
|
||||
name = "megalosaure"
|
||||
address_size = 2
|
||||
default_int_size = 4
|
||||
instr_aligment = 2
|
||||
max_instr_length = 12
|
||||
|
||||
regs = {reg: RegisterInfo(reg, 4) for reg in registers}
|
||||
stack_pointer = "sp"
|
||||
|
||||
def get_instruction_text(self, data, addr):
|
||||
instruction = Instruction.disassemble(data, addr)
|
||||
return instruction.to_tokens(), instruction.size
|
||||
|
||||
def get_instruction_info(self, data, addr):
|
||||
instruction = Instruction.disassemble(data, addr)
|
||||
return instruction.info()
|
||||
|
||||
def get_instruction_low_level_il(self, data, addr, il):
|
||||
pass
|
||||
|
||||
|
||||
Megalosaure.register()
|
||||
arch = Architecture["megalosaure"]
|
29
jujure/static/megalosaure/src/simple.c
Normal file
29
jujure/static/megalosaure/src/simple.c
Normal file
@ -0,0 +1,29 @@
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
uint64_t megalosaure(uint32_t m0, uint32_t m1);
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
char m0_c[8] = {'F', 'C', 'S', 'C', '{', '0', '0', '0'};
|
||||
uint32_t *m0 = (uint32_t *)(m0_c);
|
||||
uint32_t *m1 = (uint32_t *)(&m0_c[4]);
|
||||
|
||||
for (int i = 30; i < 127; ++i)
|
||||
{
|
||||
m0_c[5] = i;
|
||||
for (int j = 30; j < 127; ++j)
|
||||
{
|
||||
m0_c[6] = j;
|
||||
for (int k = 30; k < 127; ++k)
|
||||
{
|
||||
m0_c[7] = k;
|
||||
uint64_t res = megalosaure(*m0, *m1);
|
||||
if (res == 0x9b07e7ce91a8a7b5)
|
||||
{
|
||||
printf("%s\n", m0_c);
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user